Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103.526
Filtrar
1.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619235

RESUMO

Two-photon microscopy has emerged as a potent tool for evaluating deep tissue cells and characterizing the alignment of the extracellular matrix (ECM) in various biological systems. This technique relies on nonlinear light-matter interactions to detect two distinct signals: the second harmonic generated (SHG) diffusion signal, which facilitates the visualization of collagen fibers and their orientation, and the near-infrared excitation signal for imaging ultraviolet excited autofluorescence. SHG imaging proves especially effective in visualizing collagen fibers due to the non-centrosymmetric crystalline structure of fibrillar collagen I. Given that tendons are matrix-rich tissues with a limited number of cells, their high collagen content makes them ideal candidates for analysis using two-photon microscopy. Consequently, two-photon microscopy offers a valuable means to analyze and characterize collagen abnormalities in tendons. Its application extends to studying tendon development, injuries, healing, and aging, enabling the comprehensive characterization of tendon cells and their interactions with the ECM under various conditions using two-photon microscopy tools. This protocol outlines the use of two-photon microscopy in tendon biology and presents an adapted methodology to achieve effective imaging and characterization of tendon cells during development and after injury. The method allows the utilization of thin microscopic sections to create a comprehensive image of the ECM within tendons and the cells that interact with this matrix. Most notably, the article showcases a technique to generate 3D images using two-photon microscopy in animal models.


Assuntos
Envelhecimento , Microscopia , Animais , Difusão , Tendões/diagnóstico por imagem , Colágeno
2.
Sci Rep ; 14(1): 8729, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622264

RESUMO

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Losartan , Piridonas , Humanos , Ratos , Animais , Losartan/farmacologia , Losartan/uso terapêutico , Bleomicina/toxicidade , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Antioxidantes/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Colágeno/farmacologia
3.
Mol Biol Rep ; 51(1): 506, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622341

RESUMO

BACKGROUND: Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS: The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS: The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.


Assuntos
Fibrilação Atrial , Fator Natriurético Atrial , Ratos , Animais , Ratos Sprague-Dawley , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Tenascina , Fibrilação Atrial/tratamento farmacológico , Angiotensina II/farmacologia , Inflamação/tratamento farmacológico , Colágeno , Fibrose
4.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612551

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a solid-tumor malignancy. To enhance the treatment landscape of PDAC, a 3D model optimized for rigorous drug screening is essential. Within the PDAC tumor microenvironment, a dense stroma comprising a large extracellular matrix and cancer-associated fibroblasts (CAFs) is well-known for its vital role in modulating tumor growth, cellular heterogeneity, bidirectional paracrine signaling, and chemoresistance. In this study, we employed a fibroblast-populated collagen lattice (FPCL) modeling approach that has the ability to replicate fibroblast contractility in the collagenous matrix to build dense stroma. This FPCL model allows CAF differentiation by facilitating multifaceted cell-cell interactions between cancer cells and CAFs, with the differentiation further influenced by mechanical forces and hypoxia carried within the 3D structure. Our FPCL models displayed hallmark features, including ductal gland structures and differentiated CAFs with spindle shapes. Through morphological explorations alongside in-depth transcriptomic and metabolomic profiling, we identified substantial molecular shifts from the nascent to mature model stages and potential metabolic biomarkers, such as proline. The initial pharmacological assays highlighted the effectiveness of our FPCL model in screening for improved therapeutic strategies. In conclusion, our PDAC modeling platform mirrors complex tumor microenvironmental dynamics and offers an unparalleled perspective for therapeutic exploration.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Pâncreas , Hormônios Pancreáticos , Colágeno
5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612608

RESUMO

The relentless pursuit of effective strategies against skin aging has led to significant interest in the role of bioactive factors, particularly secondary metabolites from natural sources. The purpose of this study is to meticulously explore and summarize the recent advancements in understanding and utilization of bioactive factors against skin aging, with a focus on their sources, mechanisms of action, and therapeutic potential. Skin, the largest organ of the body, directly interacts with the external environment, making it susceptible to aging influenced by factors such as UV radiation, pollution, and oxidative stress. Among various interventions, bioactive factors, including peptides, amino acids, and secondary metabolites, have shown promising anti-aging effects by modulating the biological pathways associated with skin integrity and youthfulness. This article provides a comprehensive overview of these bioactive compounds, emphasizing collagen peptides, antioxidants, and herbal extracts, and discusses their effectiveness in promoting collagen synthesis, enhancing skin barrier function, and mitigating the visible signs of aging. By presenting a synthesis of the current research, this study aims to highlight the therapeutic potential of these bioactive factors in developing innovative anti-aging skin care solutions, thereby contributing to the broader field of dermatological research and offering new perspectives for future studies. Our findings underscore the importance of the continued exploration of bioactive compounds for their potential to revolutionize anti-aging skin care and improve skin health and aesthetics.


Assuntos
Envelhecimento da Pele , Aminoácidos , Colágeno , Peptídeos/farmacologia
6.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612828

RESUMO

Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.


Assuntos
Matriz Extracelular Descelularizada , Envelhecimento da Pele , Humanos , Idoso , Materiais Biocompatíveis/farmacologia , Hidrogéis , Colágeno
7.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613037

RESUMO

Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1ß (IL-1ß), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Animais , Camundongos , Humanos , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Células Endoteliais , Fibroblastos , Mitocôndrias , Colágeno
8.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607044

RESUMO

Among patients on peritoneal dialysis (PD), 50-80% will develop peritoneal fibrosis, and 0.5-4.4% will develop life-threatening encapsulating peritoneal sclerosis (EPS). Here, we investigated the role of extracellular vesicles (EVs) on the TGF-ß- and PDGF-B-driven processes of peritoneal fibrosis. EVs were isolated from the peritoneal dialysis effluent (PDE) of children receiving continuous ambulatory PD. The impact of PDE-EVs on the epithelial-mesenchymal transition (EMT) and collagen production of the peritoneal mesothelial cells and fibroblasts were investigated in vitro and in vivo in the chlorhexidine digluconate (CG)-induced mice model of peritoneal fibrosis. PDE-EVs showed spherical morphology in the 100 nm size range, and their spectral features, CD63, and annexin positivity were characteristic of EVs. PDE-EVs penetrated into the peritoneal mesothelial cells and fibroblasts and reduced their PDE- or PDGF-B-induced proliferation. Furthermore, PDE-EVs inhibited the PDE- or TGF-ß-induced EMT and collagen production of the investigated cell types. PDE-EVs contributed to the mesothelial layer integrity and decreased the submesothelial thickening of CG-treated mice. We demonstrated that PDE-EVs significantly inhibit the PDGF-B- or TGF-ß-induced fibrotic processes in vitro and in vivo, suggesting that EVs may contribute to new therapeutic strategies to treat peritoneal fibrosis and other fibroproliferative diseases.


Assuntos
Vesículas Extracelulares , Diálise Peritoneal , Fibrose Peritoneal , Criança , Humanos , Camundongos , Animais , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Fator de Crescimento Transformador beta/metabolismo , Peritônio , Diálise Peritoneal/efeitos adversos , Colágeno/metabolismo
9.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607065

RESUMO

(1) Background: Our previous data indicated that disturbance of the Transforming Growth Factor beta (TGFB) signaling pathway via its Type-2 Receptor (TGFBR2) can cause a Corneal Ectasia (CE)-like phenotype. The purpose of this study is to elucidate whether the SMAD4-dependent signaling pathway is involved in the TGFBR2-related CE-like pathogenesis. (2) Methods: Smad4 was designed to be conditionally knocked out from keratocytes. Novel triple transgenic mice, KerartTA; Tet-O-Cre; Smad4flox/flox (Smad4kera-cko), were administered with doxycycline (Dox). Optical Coherence Tomography (OCT) was performed to examine Central Corneal Thickness (CCT), Corneal Radius, Anterior Chamber and CE-like phenotype and compared to the littermate Control group (Smad4Ctrl). (3) Results: The OCT revealed normal cornea in the Smad4Ctrl and a CE-like phenotype in the Smad4kera-cko cornea, in which the overall CCT in Smad4kera-cko was thinner than that of Smad4Ctrl at P42 (n = 6, p < 0.0001) and showed no significant difference when compared to that in Tgfbr2kera-cko. Furthermore, the measurements of the Anterior Chamber and Corneal Radius indicated a substantial ectatic cornea in the Smad4kera-cko compared to Smad4Ctrl. The H&E staining of Smad4kera-cko mimics the finding in the Tgfbr2kera-cko. The positive immunostaining of cornea-specific marker K12 indicating the cell fate of cornea epithelium remained unchanged in Smad4kera-cko and the Proliferating Cell Nuclear Antigen (PCNA) immunostaining further indicated an enhanced proliferation in the Smad4kera-cko. Both immunostainings recapitulated the finding in Tgfbr2kera-cko. The Masson's Trichrome staining revealed decreased collagen formation in the corneal stroma from both Smad4kera-cko and Tgfbr2kera-cko. The collagen type 1 (Col1a1) immunostaining further confirmed the reduction in collagen type 1 formation in Smad4kera-cko. (4) Conclusions: The aforementioned phenotypes in the Smad4kera-cko strain indicated that the SMAD4-dependent signaling pathway is involved in the pathogenesis of the CE-like phenotype observed in Tgfbr2kera-cko.


Assuntos
Doenças da Córnea , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Doenças da Córnea/patologia , Camundongos Transgênicos , Transdução de Sinais , Fenótipo , Colágeno
10.
Arch Oral Biol ; 162: 105962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569446

RESUMO

OBJECTIVE: This study assessed the impact of an anti-sclerostin monoclonal antibody (Scl-Ab)-based osteoporosis drug on the post-extraction alveolar repair of ovariectomized rats. DESIGN: Fifteen female rats were randomly distributed into three groups: CTR (healthy animals), OST (osteoporosis induced by ovariectomy), and OST+Scl-Ab (osteoporosis induction followed by Scl-Ab treatment). Ovariectomy or sham surgery was performed 30 days before baseline, and Scl-Ab or a vehicle was administered accordingly in the groups. After seven days, all rats underwent the first lower molar extraction and were euthanized 15 days later. Computed microtomography, histological analysis, and collagen content measurement were performed on post-extraction sockets and intact mandibular and maxillary bone areas. RESULTS: Microtomographic analyses of the sockets and mandibles did not reveal significant differences between groups on bone morphometric parameters (p > 0.05), while maxillary bone analyses resulted in better maintenance of bone architecture in OST+Scl-Ab, compared to OST (p < 0.05). Descriptive histological analysis and polarization microscopy indicated better post-extraction socket repair characteristics and collagen content in OST+Scl-Ab compared to OST (p < 0.05). CONCLUSIONS: Scl-Ab-based medication did not accelerate alveolar bone formation but exhibited better post-extraction repair characteristics, and collagen content compared to ovariectomized animals only.


Assuntos
Proteínas Morfogenéticas Ósseas , Osteoporose , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Marcadores Genéticos , Anticorpos Monoclonais/farmacologia , Colágeno
11.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612378

RESUMO

Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions.


Assuntos
Matriz Extracelular , Canais de Cátion TRPV , Membrana Celular , Junções Célula-Matriz , Colágeno , Integrinas , Canais de Cátion TRPV/genética , Humanos
12.
Zhongguo Zhong Yao Za Zhi ; 49(3): 789-797, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621883

RESUMO

This study aims to investigate the effect and mechanism of Fuyu Decoction(FYD) in the treatment of myocardial fibrosis in the rat model of heart failure(HF). Sixty Wistar rats were randomized into a modeling group(n=50) and a sham group(n=10). A post-myocardial infarction HF model was established by ligating the left anterior descending coronary artery in rats. The successfully modeled rats were assigned into model, low-dose(2.5 g·kg~(-1)) FYD(FYD-L), high-dose(5.0 g·kg~(-1)) FYD(FYD-H), and FYD+Nrf2 inhibitor(ML385, 30 mg·kg~(-1)) groups(n=10). FYD was administrated by gavage and ML385 by intraperitoneal injection. The rats in the sham and model groups were administrated with equal amounts of normal saline by gavage. After 8 weeks of intervention, the cardiac function indicators were measured, and the myocardial tissue morphology and collagen deposition were observed. The positive expression of collagens Ⅰ and Ⅲ, apoptosis, and oxidative stress were examined, and the levels of Fe~(2+) and reactive oxygen species(ROS) were determined. The protein levels of nuclear factor erythroid 2-related factor 2(Nrf2), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), and acyl-coenzyme A synthase long chain family member 4(ACSL4) in the myocardial tissue were determined. Compared with sham group, the model group showed decreased left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), increased left ventricular end internal dimension in systole(LVIDs), left ventricular internal diameter in diastole(LVIDd), and myocardial collagen deposition, positive expression of collagens Ⅰ and Ⅲ, elevated apoptosis rate and malondialdehyde(MDA), Fe~(2+), and ROS levels, lowered superoxide dismutase(SOD) and glutathione peroxidase(GSH) levels, down-regulated protein levels of Nrf2, SLC7A11, and GPX4, and up-regulated protein level of ACSL4. Compared with the model group, the above indicators were restored by FYD. Moreover, ML385 reversed the protective effect of FYD on myocardial fibrosis in HF rats. In conclusion, FYD can inhibit ferroptosis by activating the Nrf2/GPX4 pathway, thereby ameliorating myocardial fibrosis in HF rats.


Assuntos
Ferroptose , Insuficiência Cardíaca , Ratos , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Volume Sistólico , Espécies Reativas de Oxigênio , Função Ventricular Esquerda , Ratos Wistar , Insuficiência Cardíaca/tratamento farmacológico , Fibrose , Colágeno/farmacologia
13.
BMC Pediatr ; 24(1): 242, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580989

RESUMO

EPIDERMOLYSIS: Bullosa is a rare hereditary skin condition that causes blisters. Genes encoding structural proteins at or near the dermal-epidermal junction are mutated recessively or dominantly, and this is the primary cause of EB. Herein, two Chinese boys were diagnosed with the condition, each with a different variant in a gene that serves as a reference for EB genetic counseling. Skincare significantly impacted their prognosis and quality of life. CASE PRESENTATION: Two Chinese boys, with phenotypically normal parents, have been diagnosed with distinct blister symptoms, one with Dominant Dystrophic Epidermolysis Bullosa and the other with a severe form of Epidermolysis Bullosa Simplex. The first patient had a G-to-A variant in the COL7A1 allele, at nucleotide position 6163 which was named "G2055A". The proband is heterozygous for Dystrophic Epidermolysis Bullosa due to a COL7A1 allele with a glycine substitution at the triple helix domain. A similar variant has been discovered in his mother, indicating its potential transmission to future generations. Another patient had severe Epidermolysis Bullosa Simplex with a rare c.377T > A  variant resulting in substitution of amino acid p.Leu126Arg (NM_000526.5 (c.377T > G, p.Leu126Arg) in the Keratin 14 gene. In prior literature, Keratin 14 has been associated with an excellent prognosis. However, our patient with this infrequent variant tragically died from sepsis at 21 days old. There has been a reported occurrence of the variant only once. CONCLUSION: Our study reveals that Epidermolysis Bullosa patients with COL7A1 c.6163G > A and KRT14 c.377T>A variants have different clinical presentations, with dominant forms of Dystrophic EB having milder phenotypes than recessive ones. Thus, the better prognosis in the c.6163G > A patient. Furthermore, c.377T>A patient was more prone to infection than the patient with c.6163G>A gene variant. Genetic testing is crucial for identifying the specific variant responsible and improving treatment options.


Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa Simples , Epidermólise Bolhosa , Humanos , Masculino , Colágeno , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/diagnóstico , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Queratina-14/genética , Mutação , Qualidade de Vida
14.
Cell Mol Life Sci ; 81(1): 159, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558087

RESUMO

Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.


Assuntos
Artrite Experimental , Animais , Camundongos , Colágeno , Colágeno Tipo II , Epitélio , Timo , Receptor EphB3/metabolismo
15.
J Nanobiotechnology ; 22(1): 143, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561800

RESUMO

BACKGROUND: Endoscopic submucosal dissection (ESD) is the current standard treatment for early-stage esophageal neoplasms. However, the postoperative esophageal stricture after extensive mucosal dissection remains a severe challenge with limited effective treatments available. In this study, we introduced a chitosan/gelatin (ChGel) sponge encapsulating the adipose mesenchymal stem cells (ADMSCs)-derived exosomes (ChGelMSC-Exo) for the prevention of esophageal stenosis after ESD in a porcine model. RESULTS: Pigs were randomly assigned into (1) ChGelMSC-Exo treatment group, (2) ChGelPBS group, and (3) the controls. Exosome treatments were applied immediately on the day after ESD as well as on day 7. Exosome components crucial for wound healing were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and small RNA sequencing. ChGelMSC-Exo treatment significantly reduced mucosal contraction on day 21, with less fiber accumulation and inflammatory infiltration, and enhanced angiogenesis when compared with the control and ChGelPBS groups. The anti-fibrotic effects following MSC-Exo treatment were further found to be associated with the anti-inflammatory M2 polarization of the resident macrophages, especially within the M2b subset characterized by the reduced TGFß1 secretion, which sufficiently inhibited inflammation and prevented the activation of myofibroblast with less collagen production at the early stage after ESD. Moreover, the abundant expression of exosomal MFGE8 was identified to be involved in the transition of the M2b-macrophage subset through the activation of MFGE8/STAT3/Arg1 axis. CONCLUSIONS: Our study demonstrates that exosomal MFGE8 significantly promotes the polarization of the M2b-macrophage subset, consequently reducing collagen deposition. These findings suggest a promising potential for MSC-Exo therapy in preventing the development of esophageal stricture after near-circumferential ESD.


Assuntos
Ressecção Endoscópica de Mucosa , Estenose Esofágica , Exossomos , Células-Tronco Mesenquimais , Suínos , Animais , Estenose Esofágica/etiologia , Estenose Esofágica/prevenção & controle , Ressecção Endoscópica de Mucosa/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Colágeno
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 605-616, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597453

RESUMO

OBJECTIVE: To explore the core genes related to the diagnosis and prognosis of gastric cancer (GC) based on Gene Expression Omnibus (GEO) database and screen the molecular targets involved in the occurrence and development of GC. METHODS: GC microarray data GSE118916, GSE54129 and GSE79973 were downloaded from GEO database, and the differentially expressed genes (DEGs) were screened. Enrichment analysis of the signaling pathways and molecular functions were preformed and protein-protein interaction networks (PPI) were constructed to identify the hub genes, whose expression levels and diagnostic and prognostic values were verifies based on gastric adenocarcinoma data from TCGA. The expression levels of these core genes were also detected in different GC cell lines using qRT- PCR. RESULTS: Seventy-seven DEGs were identified, which encodes proteins located mainly in the extracellular matrix and basement membrane with activities of oxidoreductase and extracellular matrix receptor and ligand, involving the biological processes of digestion and hormone metabolism and the signaling pathways in retinol metabolism and gastric acid secretion. Nine hub genes were obtained, among which SPARC, TIMP1, THBS2, COL6A3 and THY1 were significantly up- regulated and TFF1, GKN1, TFF2 and PGC were significantly down-regulated in GC. The abnormal expressions of SPARC, TIMP1, THBS2, COL6A3, TFF2 and THY1 were significantly correlated with the survival time of GC patients. ROC curve analysis showed that aberrant expression of TIMP1 SPARC, THY1 and THBS2 had high diagnostic value for GC. High expressions of SPARC, TIMP1, THBS2 and COL6A3 were detected in GC tissues. In the GC cell lines, qRT- PCR revealed different expression patterns of these hub genes, but their expressions were largely consistent with those found in bioinformatics analyses. CONCLUSION: SPARC, TIMP1, THBS2 and other DEGs are probably involved in GC occurrence and progression and may serve as potential candidate molecular markers for early diagnosis and prognostic evaluation of GC.


Assuntos
Hormônios Peptídicos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Perfilação da Expressão Gênica , Detecção Precoce de Câncer , Mapas de Interação de Proteínas/genética , Prognóstico , Colágeno , Biologia Computacional
17.
Skin Res Technol ; 30(4): e13681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584576

RESUMO

OBJECTIVE: Safe, effective, and biocompatible minimally invasive procedures with the potential to stimulate collagen production have been made to recover dermal thickness and skin quality. The main of this animal model experiment was to observe the effect of poly-L-lactic acid (PLLA) and polydioxanone (PDO) biostimulators in collagen I and III after hypodermal injection. METHODOLOGY: Sixteen adult female rats (Wistar) were randomized into four groups and had dorsal treatment with: G1: hypodermic subcision (HS) only; G2: HS and PLLA hypodermic injection (HI), G3: HS and PDO HI; G4: Control, with no treatment. RESULTS: In histochemical, it was observed hypodermal and dermal tissue in more organized thickness in G3 and in G4 when compared to G1 and G2. There was few difference in G1 compared to G4. The tissue of G2 showed irregularities in the arrangement of collagen fibers, less defined structure and lower distribution of type I collagen compared to the other groups. There is a greater tendency for the proportions of type III collagen among tissues treated with both biostimulators (G2 and G3). PLLA and PDO had relatively similar percentages of collagen when compared to G4. The amount of type I collagen was higher in tissues treated with subcision, while type III collagen was higher in tissues treated with both biostimulators. CONCLUSION: G3 showed better performance in collagen production, although small, when compared with G2.


Assuntos
Colágeno Tipo I , Polidioxanona , Poliésteres , Ratos , Feminino , Animais , Polidioxanona/farmacologia , Colágeno Tipo III , Ratos Wistar , Colágeno
18.
J Wound Care ; 33(Sup4a): cxi-cxvii, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588055

RESUMO

OBJECTIVE: Scar tissue formation, as a normal part of wound healing, initiates in the proliferation phase, continues after the remodelling phase, and may cause an unpleasant appearance or disruption in normal functioning. This study investigated the effects of a topical gel on acute wound healing and reducing scars in a rat model. METHOD: ChitoScar (ChitoTech Company, Iran), a commercial scar-reducing gel based on chitosan, was analysed for antibacterial and antiviral activity through a quantitative suspension test. Its cytotoxic effect was investigated, and then irritation and delayed-type hypersensitivity tests were carried out on rabbits through direct application of the gel. Furthermore, the effect of the chitosan-based gel on wound healing and scar tissue formation was studied in rats with an acute wound in two groups: the treatment group (topical application of the chitosan-based gel); and the control group (without treatment). Histopathological examination was carried out based on the inflammatory cells, collagen fibre, keratinocytes and fibroblasts. RESULTS: Analysis revealed that the chitosan-based gel had no cytotoxicity and caused no erythema, oedema, local or other systemic adverse response. Wound healing occurred earlier in the treatment group, which was a result of a significant increase in re-epithelialisation, angiogenesis, fibroblast population and collagen fibre thickness (p<0.05). In the treatment group, wounds healed completely after 21 days and scars totally disappeared after 28 days, while in the control group, wound healing remained incomplete with distinct scar tissue. CONCLUSION: The results demonstrated the positive effect of the chitosan-based gel on the duration and quality of the wound healing process, as well as minimising the scar tissue formation in this in vivo study.


Assuntos
Quitosana , Cicatriz , Ratos , Coelhos , Animais , Quitosana/farmacologia , Quitosana/uso terapêutico , Cicatrização , Pele , Colágeno/farmacologia
19.
Int J Nanomedicine ; 19: 3123-3142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585474

RESUMO

Purpose: To study whether the absence of laminar shear stress (LSS) enables the uptake of very small superparamagnetic iron oxide nanoparticles (VSOP) in endothelial cells by altering the composition, size, and barrier function of the endothelial surface layer (ESL). Methods and Results: A quantitative particle exclusion assay with living human umbilical endothelial cells using spinning disc confocal microscopy revealed that the dimension of the ESL was reduced in cells cultivated in the absence of LSS. By combining gene expression analysis, flow cytometry, high pressure freezing/freeze substitution immuno-transmission electron microscopy, and confocal laser scanning microscopy, we investigated changes in ESL composition. We found that increased expression of the hyaluronan receptor CD44 by absence of shear stress did not affect the uptake rate of VSOPs. We identified collagen as a previously neglected component of ESL that contributes to its barrier function. Experiments with inhibitor halofuginone and small interfering RNA (siRNA) demonstrated that suppression of collagen expression facilitates VSOP uptake in endothelial cells grown under LSS. Conclusion: The absence of laminar shear stress disturbs the barrier function of the ESL, facilitating membrane accessibility and endocytic uptake of VSOP. Collagen, a previously neglected component of ESL, contributes to its barrier function.


Assuntos
Células Endoteliais , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Células Endoteliais/metabolismo , Endotélio , Perfilação da Expressão Gênica , Colágeno/metabolismo , Estresse Mecânico , Células Cultivadas
20.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587393

RESUMO

Tendons enable locomotion by transferring muscle forces to bones. They rely on a tough tendon core comprising collagen fibers and stromal cell populations. This load-bearing core is encompassed, nourished, and repaired by a synovial-like tissue layer comprising the extrinsic tendon compartment. Despite this sophisticated design, tendon injuries are common, and clinical treatment still relies on physiotherapy and surgery. The limitations of available experimental model systems have slowed the development of novel disease-modifying treatments and relapse-preventing clinical regimes. In vivo human studies are limited to comparing healthy tendons to end-stage diseased or ruptured tissues sampled during repair surgery and do not allow the longitudinal study of the underlying tendon disease. In vivo animal models also present important limits regarding opaque physiological complexity, the ethical burden on the animals, and large economic costs associated with their use. Further, in vivo animal models are poorly suited to systematic probing of drugs and multicellular, multi-tissue interaction pathways. Simpler in vitro model systems have also fallen short. One major reason is a failure to adequately replicate the three-dimensional mechanical loading necessary to meaningfully study tendon cells and their function. The new 3D model system presented here alleviates some of these issues by exploiting murine tail tendon core explants. Importantly, these explants are easily accessible in large numbers from a single mouse, retain 3D in situ loading patterns at the cellular level, and feature an in vivo-like extracellular matrix. In this protocol, step-by-step instructions are given on how to augment tendon core explants with collagen hydrogels laden with muscle-derived endothelial cells, tendon-derived fibroblasts, and bone marrow-derived macrophages to substitute disease- and injury-activated cell populations within the extrinsic tendon compartment. It is demonstrated how the resulting tendon assembloids can be challenged mechanically or through defined microenvironmental stimuli to investigate emerging multicellular crosstalk during disease and injury.


Assuntos
Células Endoteliais , Traumatismos dos Tendões , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Estudos Longitudinais , Tendões/fisiologia , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/cirurgia , Colágeno/metabolismo , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...